Saturday, November 29, 2014

It's Just Another Brick from the Wall

Ask any genealogist to list his or her frustrations and inevitably the term “brick wall” will surface in the discussions.  Brick walls are points when all clues regarding an individual are seemingly non-existent.  In most cases, these brick walls occur as we go backwards in our lineage and we reach a point where an ancestor’s identity is unknown. 

For Americans, this can happen within a few generations as record keeping was sparse, spotty, or non-existent in some locals during the 19th century.  Municipalities, counties, and states had varying degrees of public record keeping. In other words, there is no official US standard and American genealogy can be difficult at best.  

When we begin our genealogical quest, our mission of discovering each ancestor is actually a series of brick walls that will be either knocked down with extensive research or will remain solid.  Sometimes this happens with one piece of direct evidence, or it only occurs with constant chiseling with indirect documentary or DNA evidence (see example).  Not only will we encounter brick walls while seeking our direct ancestors, but we will also run headlong into the same barriers when we trace the descendents of those ancestors as well – our collateral lines.

One of My Walls

For 37 years, I’ve been searching for my great-grandfather’s sister with very little luck.  Over time, I've been able to ascertain that Frances Jenett Owston was born in Allegheny City (now Pittsburgh’s North Side), Pennsylvania in 1852, but I never could find her as an adult.  I first became aware of her existence in late 1977 when my great-grandparents’ family bible surfaced after being out of the bloodline for nearly 50 years.  Between the pages of this large presentation bible was a piece of heavy card stock with 11 locks of hair; each one was identified and dated. 

Some individuals had two samples from different periods of their lives including my great-grandfather who had one dated from 1858 when he was four years old and one from twenty-two years later.  While most of the names were easily identifiable as being members of my great-grandparents’ household, two were not.  One was a Grandma Ritchey, 79 years of age  – who was eventually determined to be my third great grandmother.  The other was for Fannie Owston; her sample was dated 1859. 

The other Fannie Owston - Frances W. Owston
For 27 years, I had assumed that this was my great-grandfather’s first cousin, Frances W. Owston, who also lived in Pittsburgh.  Since my great-grandfather’s family was musical and this Fannie Owston was a music teacher, it seemed plausible.  Confirming the identification was problematic, as I couldn’t initially find my second great-grandparents in the 1860 census.   Despite repeated searching of the census records, I was unable to find their listing until 2007. The problem was that the family was listed under an incorrect but similar surname and the head of the house’s (my second great-grandfather) initials were transposed.  See my post on this. 

Although finding the census in 2007 provided additional evidence of her existence as my great-grandfather’s sister, I was able to determine the identity of Fannie Owston three years earlier.  While browsing through the genealogical books in the Carnegie Public Library in Pittsburgh, I found Ken McFarland’s book Births, Marriages, and Deaths of Allegheny County, Pennsylvania 1852-1854.  McFarland’s a diligent researcher who has transcribed and indexed numerous records from the Greater Pittsburgh area.

While in 1980 I had previously looked at the microfilm of Allegheny County’s records from this period, I found no one in our family listed and never revisited these documents.  This time, however, I was interested in McFarland’s book, not for my own family, but for siblings of 1200 Pennsylvania Civil War soldiers that I am tracing from womb to the tomb.  I was hoping to find maiden names of the mothers of some of these soldiers. 

Click to see larger record.
As I opened the book, there it was on page one – and it was even registration number one: the birth record of Frances Owston daughter of John G. Owston and Martha N. French.  She was born at 7 PM on July 13, 1852 in the fourth ward of Allegheny City, PA.  Since this time, I’ve searched diligently for Frances Owston, but outside of the additional listing in the 1860 census, I’ve had no luck. 

The family had moved from Pittsburgh to Canada in about 1857 and was in Detroit in 1860 where my second great-grandmother died that same year.  In 1995, I had traveled to Detroit to research my second great grandparents.  While I found some information on the family, nothing on Frances surfaced.  No one else was buried in the plot where my second great grandmother was buried, so it seemed plausible that Fannie survived the family’s eight year stay in Michigan.

By 2009, I became aware of my family’s 1863 move from Detroit to East Saginaw along with my second great-grandfather’s marriage to and subsequent divorce from Permelia Condon.  This heretofore unknown tidbit was a serendipitous discovery through searching my surname in Google Books.  A published biography and photo of my second great-grandfather with information about his work in Saginaw led to the discovery of his second wife.  After the couple separated, the family moved back to Allegheny City in 1868. 

Unfortunately, Detroit, East Saginaw, and Wayne and Saginaw counties were not registering vital information during the 1860s and 1870s.  If Fannie had moved back to Allegheny County with her father and brother, chances of finding her if she married or died were marginal.  Allegheny County did not begin registrations of marriages until September 1885 and Allegheny City did not register births or deaths until July 1882. I had already checked all of these records in the past for anyone with my surname.  If death or marriage occurred before the 1880s, I might never find her.  But, I never stopped searching.

Background on the Records

While Pennsylvania is currently ranked at sixth in population, it was the second most populous state for much of its history.  You would think that a vital “keystone” of a state might have policies in place to register births, marriages, and deaths – but alas, it did not for many years.  In the mid 19th century, Pennsylvania attempted to institute registrations of births, marriages, and deaths.  This 1852 registration was unsuccessful, and the state dropped the experiment after two years.

One problem was that registration was not compulsory and many individuals failed to comply.  Frances Owston was the first to be registered in Pennsylvania’s second largest county and third largest city, but her birth occurred seven months after the law was effected and was not registered by the physician until three months later. Her brother’s birth two years later in the same town was never registered with the state.

Eventually, individual municipalities began to register births and deaths over the next 50 years.  Pittsburgh, the second largest city in the Commonwealth, began in 1870.  As previously stated, Pittsburgh’s neighbor to the north, Allegheny City, waited 12 more years to register birth and death records.  Other towns followed suit but only when it was convenient to do so. 

Additionally, none of these registrations through 1905 were mandatory.  A case in point is my father’s siblings. All five were born before 1906 and two died in early childhood during the same period; none of these events were registered even though the municipalities were actively registering births and deaths.   

The practice with marriages and divorces in Pennsylvania was different.  As of September 30, 1885, Pennsylvania required that all counties register marriages and these be on file in the local county courthouse.  Marriage registration was mandatory and the same process exists today.  Divorce records were registered with the county’s Prothonotary beginning in 1804.  Statewide mandatory vital registration, however, did not begin until 1906, which is late considering the population of Pennsylvania and that it prides itself on being the second state to ratify the Constitution.  

Fast forward

After November 2014’s election, Governor Tom Corbett may not think he has a friend in Pennsylvania, but he certainly has a friend in me, as he signed Act 110 (Pennsylvania Vital Records Bill SB-361) into law on December 15, 2011. I was one of the many people to sign several petitions over the last 10 years to hasten the Commonwealth to begin this process.  The bill went into effect on February 13, 2012 and the Division of Vital Records transferred all death certificates 50 years old and older and birth certificates 105 years old and older to the Pennsylvania State Archives in Harrisburg.  

Declaring these documents as old records made them easily available to the public and the old paper indexes for both became listed on the Pennsylvania Department of Health’s website.  The indices, however, are PDF scans of the typewritten copies and are laborious to use – but, at least, they are there. Copies of the original records are now available to anyone through the State Archives for $5.00.  This is providing you have the registration number from the indices.  From my personal experience, the turnaround of the processing takes less than a week.

How important is this move?  Being a native Pennsylvanian and an avid researcher of Pennsylvania records, this was a dream come true.  In the past, Vital Records’ processing was slow (up to a month); they could reject you if you were not a blood descendent or legal representative of the person on the birth certificate (a caveat on their forms); you were not allowed to copy, photograph, or publish an image of the record; and the service was expensive to use, especially if you simultaneously wanted numerous certificates. Prior to the transfer, a death record would cost $10, unless you didn’t know the date and then an additional search fee was of $10 was charged for a search of ten years.

While looking for my great-grandfather’s first cousin’s death record, I got stung for $50. Not knowing the date of his passing, I ordered a copy of the certificate with a 10 year window (1920-1929) search – that was $20. No document was found.  I ordered another search at $20 for the years of 1910-1919. This was also inconclusive.  Several years later while perusing a church’s records on site, I found his 1923 burial date – the cemetery provided an exact date of death.  I ordered the certificate again ($10) with the exact date and received it.  Unfortunately, Vital Records did a sloppy job on the first search and I was out $30. 

Further Movement

In August 2012, the Pennsylvania State Archives and Ancestry signed an agreement for the company to digitize and upload the records.  These would be freely available to Pennsylvania residents if they register at  All Ancestry customers would also have access as part of their individual memberships. 

On April 18, 2014, Ancestry announced that it had uploaded the images and database information on death records from 1906-1924.  As with many individuals, I began searching for family and others.  As with the database and the certificates, there were some issues that I will address in future posts.  The second group, 1925-1944, went live on June 24, 2014.  The records through 1963 completed the death certificate process on October 24, 2014.

Birth certificates for 1906 will be completed in March 2015.  No timeline has been communicated regarding the records for 1907-1909.  Until the end of this year, only the indices for 1906-1908 are currently available. 

Brick Wall Smashed

In July 2014, I decided to see if Ancestry had completed any further uploading of death certificates.  They had, and I did my customary search of my surname.  To my surprise, I found a Frances Beecher Smith who was the daughter of John Owston and Martha French.  This was my great-grandfather’s missing sister.

Click for larger version.
After doing additional research in Pittsburgh, I began to piece together her story:  two failed marriages, a bitter rivalry with another woman, the birth of two children, the loss of a grandchild, and the finding of another.  While she never owned her own home, what she did have was far more precious than gold.  She lived a long life and had the support of a family that dearly loved her and to whom she reciprocated that love.

My biggest surprise about Fannie was that she lived less than 15 miles from my childhood home.  Outside of the records I previously mentioned, I had never encountered her in any other until now.  In fact, I had walked across her grave (which is unmarked) on at least four occasions looking for others in the same cemetery.   No stone is present, and even if there was one, I wouldn’t have recognized the name Frances Smith. 

My brick wall - Frances J. Owston Beecher Smith
In addition, I have found Fannie’s only surviving great-grandchild who lived in the same home with her for two decades.   We have corresponded and talked on the phone concerning the differences and similarities in our respective families.  In addition, this third cousin turns out to be a double third cousin as I am related to both her maternal grandparents.  We still have a lot of catching up to do yet.

Thanks to the 48 members of the Pennsylvania Senate and 194 members of Pennsylvania House of Representatives who voted to pass this act, to Governor Tom Corbett who signed the bill into law, and to the forward thinking folks at the Pennsylvania State Archives and Ancestry for collaborating on this important project.

I have already viewed several hundreds of these certificates and in our next installment I will deal with death records, primarily those from Pennsylvania, and their importance as genealogical evidence and the inherent problems regarding these records as sources of information.  


References (2014).  Pennsylvania, Births, 1852-1854. Database available at (2014). Pennsylvania, Death Certificates, 1906-1963. Database available at

Gruber, T. (2014).  People for Better Pennsylvania Historical Records Access (PaHR-Access): Frequently Asked Questions.

Gruber, T. (2014).  People for Better Pennsylvania Historical Records Access (PaHR-Access): Genealogists, Researchers, Family Historians.

McFarland, K.T.H. (1999). Births, Marriages, and Deaths of Allegheny County, Pennsylvania 1852-1854. Apollo, PA: Closson Press.

Pennsylvania Department of Health. (2014). Act 110 – Public Records (formerly known as Senate Bill 361).

Pennsylvania General Assembly. (2012). Senate Bill 361; Session 2011-2012.

Pennsylvania Historical & Museum Commission. (2014). Vital Statistics Records at the Pennsylvania State Archives.

Thursday, June 19, 2014

Is Genetic Distance an Adequate Predictor of Relationships?


While obviously having a small pool of potential Y-DNA participants, low frequency surnames may have the advantage of having good documentation of ancestry. That is the case with my surname and its corresponding Y-DNA Project. The original intent of our project was to see if three families bearing our surname from the original East Riding of Yorkshire had a common ancestry or if the surname was applied to these lineages independently from each other.

The three families are as follows:
SHERBURN: The largest family hails originally from Sherburn in Hartford Lythe and its many members descend from Peter Owston who died in 1568. This group also includes the Ouston descendants of James Ouston (1711-1785) who was born in Brompton by Sawdon and who died in Sigglesthorne. You’ll find members of this clan in the UK, Australia, USA, Canada, New Zealand, Netherlands, France, and the UAE.
GANTON: The second largest group of Owstons originated in the village of Ganton and can be satisfactorily traced to Giles Owston who died in 1641. While an older connection cannot be firmly established, it is probably descended from John Owston who was alive circa 1490 in nearby Staxton in Willerby. This supposition occurs because several unique first names exist in both lineages. While very few Ganton Owstons live in the UK, the majority of Owstons in the US are from this family. All surviving Ganton Owstons descend from Thomas Owston (1755-1823). Ganton, like Sherburn, is now located in North Yorkshire.
THORNHOLME: Finally, a third group of Owstons from 15 miles south of Sherburn and Ganton can be traced to Richard Owston of the village of Thornholme in the parish of Burton Agnes. Richard Owston died in 1739. By using onomastic evidence, it is possible to theorize a connection to an earlier Ganton line fathered by Robert Owston who was born as recent as 1580. The Thornholme Owstons constitute the largest group in Canada. Others descended from this lineage live in Australia, the UK, Finland, and New Zealand.
In the study’s first year, a positive conclusion was reached; as three participants (one from each family) matched each other at 100% using 43 Y-DNA marker tests from GeneTree. Others in the study matched at a genetic distance of 2 and 3.

This was exciting news as it was impossible to determine a relationship between these lineages as the connection between these three families apparently occurred before the introduction of English parish registers in 1538 (however, many of the nearby parishes do not have extant registers until much later; Burton Agnes' earliest register is 1700). The first record of the surname in the region (spelled as Oustyn) appeared in a 1452 will from the parish of Wintringham.

In order to better understand our relationships and to construct a more conclusive modal haplotype of the Owston families, it was necessary to branch out beyond our original participants and attempt to test as many Owston/Ouston males as possible. We have identified 23 lines from the three families. Some lines can further be subdivided into groups that we call segments. There are 39 lines and segments.

Currently, the Owston/Ouston Y-DNA project has 26 participants – 17 Sherburn family members, 4 Ganton Owstons, and 5 Thornholme participants. The participants represent at least one person from 20 of the 23 lines and 22 of the 39 lines and segments. Additionally, some lines/segments have more than one participant. We also intend to move those who matched the Owston modal I1 haplotype at the now defunct GeneTree to retest at 37 markers at FTDNA. Eventually, all matching individuals will be moved to 111 markers. Currently, eight former GeneTree customers will need to be retested.

Of the 26 participants, four individuals are awaiting test results. Eight of the remaining individuals failed to match the modal haplotype and are apparently the results of non parental events (NPEs). Several of these participants descended from families where known NPEs existed, while others’ results were a complete surprise. It is to be noted that everyone who tested had a clear genealogical line to one of the three original families.


Currently, 14 of the participants have a solid match to the modal haplotype. These represent two Thornholme participants, three Ganton participants, and nine Sherburn participants. Early in this study, we noticed that individuals were more inclined to have closer genetic matches with individuals who were genealogically more distant than those who were more closely related. This was a curiosity that led to the eventual writing of this post.

Over the years, genetic genealogists have tended to rely upon genetic distance to help predict a range of possible relationships. In fact, FTDNA qualifies matches at various levels of genetic distance.

For example, FTDNA states that a GD=0 at 37 markers indicates that the two individuals are “very tightly related”; and with a confidence level of .05 or less, these individuals are related within eight generations (seventh cousins). A mismatch of one GD is considered “tightly related.” Genetic distances at 2 or 3 marker differences between men of the same surname are identified as “related.” As GD increases, the likelihood of a relationship diminishes with a GD=6 as considered as being not related, even when the same surname is present (Canada, 2011).

In addition, most of us have genetically close matches with individuals who obviously were further back on the relationship continuum and do not share a common surname or a variant surname. At 37 markers, I have a number of matches with individuals whose ancestry derives from distances far removed from my own East Riding ancestors. While we are related, it is obviously far beyond the genealogical time frame and may be prior to the various invasions of Britain – one of which brought my ancestors from mainland Europe.

Using my project as a case study, I have hypothesized that, although a predictor of a familial connection, genetic distance is an inadequate predictor of relationships. Before I discuss my results, I must present some caveats.

First of all, I cannot affirm an exact connection between the three families in my study; however, I have constructed plausible trees based on shared forenames, typical naming conventions, names found in wills and other local records, and the close geographical distances among all three current families and two earlier extinct families. Currently, we can only affirm the relationship intra-family; however, based on the aforementioned factors, we are confident that the supposed relationships are close to the unknown actual relationships.

Secondly, not all 14 matching participants tested at the same level of resolution. Eight tested at GeneTree with 43 markers. Four individuals tested at FTDNA at 37 markers. Finally, two individuals tested at both GeneTree (43) and FTDNA (minimum of 37).

While GeneTree’s 43 marker test shares 32 markers with FTDNA’s 37 resolution test, it was decided to compare apples to apples and oranges to oranges. Eliminating the five makers that GeneTree did not test would disregard marker differences from five of the six FTNDA participants. Eliminating the 11 additional markers tested at GeneTree would eliminate marker differences in two of the ten GeneTree participants.

Therefore, instead of comparing all 14 matching individuals, the ten who tested at GeneTree were compared to each other and six FTDNA participants were compared to each other. While this is not a perfect scenario, it does allow for a comparison of 59 (supposed) relationships. Within the entire study, there are a total 325 relationships among all participants. These include those whose results have not yet been returned and the eight additional participants with NPEs.

Third, since we have not secured many participants with close relationships (fifth cousins and closer) to other participants, the actual (and supposed) relationships skew more distant. Currently, we have only five of the 59 compared relationships at the fifth cousin level or closer. The relationships are as follows:

 2nd Cousins1
 2nd Cousins, Once Removed1
 4th Cousins, Once Removed1
 5th Cousins1
 5th Cousins, Once Removed1
 6th Cousins, Once Removed1
 7th Cousins, Once Removed1
 8th Cousins3
 8th Cousins, Once Removed1
 9th Cousins4
 9th Cousins, Once Removed3
 9th Cousins, Thrice Removed1
10th Cousins, Twice Removed8
11th Cousins, Once Removed1
12th Cousins, Once Removed4
12th Cousins, Twice Removed2
12th Cousins, Thrice Removed3
13th Cousins2
13th Cousins, Once Removed6
13th Cousins, Twice Removed9
14th Cousins, Once Removed2
15th Cousins3

The genetic distance of the 59 relationships range from 0 to 6. As expected, when the number of participants for each genetic distance (GD) is compared, the plot almost resembles a normalized curve. Both genetic distances of 2 and 3 have 14 relationships each and dominate the center of the chart. At least in our Y-DNA project, the average genetic distance among participants appears in the neighborhood of a difference of 2 to 3 markers.

However, when we look at the relationship ranges with each genetic distance, the results are all over the road. The results for two individuals having a GD of 0 and two individuals having a GD 5 are indistinguishable. There is no rhyme or reason for the results. Randomness abounds.

Additionally, the relationships can be quantified with degrees of relationship. Degrees of relationship (DR) are calculated by totaling the number of generational steps to a common ancestor by both parties and adding the two numbers together. For example, two second cousins each have three generational steps to their common ancestor; added together, two second cousins have a DR=6.

An easy way to calculate DRs would be to take the number of consanguinity, double it, and add two. For example, sixth cousins have a DR=14. For each step removed from the common generation, add a one. Sixth cousins, once removed have a DR=15 and sixth cousins, twice removed have a DR=16. A pair of seventh cousins also have a DR=16.

By quantifying the degrees of relationship, the results indicate that there is no significant difference in relationship between our participants who have a GD=0 and a GD=5. We’ve eliminated the GD=6, as only one relationship (tenth cousins, twice removed) is represented.

073024.5411th Cousins, Once Removed
163125.5012th Cousins
2123023.6411th Cousins
3183125.5712th Cousins
4113023.1110th Cousins, Once Removed
5172924.5011th Cousins, Once Removed

Notice that the results across the board are not significantly different. A GD=0 and a GD=5 result in the same adjusted mean relationship: 11th cousins, once removed. According to these results, genetic distance is an insufficient predictor of relationship range.

Although we have reached this conclusion, this is just one study and the results may only be indicative of this particular surname. I would be curious in knowing if others can replicate similar results in their studies.

Secondly, the greatest limitation on this study is the lack of the five additional markers offered by FTDNA. Four of these, DYS576, DYS570, CDY a, and CDY b are more likely to show differences. It is expected that when these markers are added, genetic distance will increase for several of the GeneTree participants. Two FTDNA participants had differences with CDY. Three of the FTNDA participants registered one marker differences from the modal result of 19 on DYS576.

What is interesting is that two ninth cousins, once removed had an exact match at 37 markers. The common ancestor for these two individuals was born in 1598. Each carried a mutation on DYS576 with 20 repeats. While on the surface it would seem that these two participants were “tightly related,” the mutations, however, were independent of each other and were not shared by closer relatives to either party: a second cousin of one of the participants and the fourth cousin, once removed of the other.

In addition, the second cousins had a GD=1 and the fourth cousins, once removed had an unusual GD=4. By FTDNA’s explanation, the ninth cousins, once removed appeared to be “very tightly related”; however, the fourth cousins, once removed would only be “probably related.”

While we may never know what causes the frequency of mutations on Short Tandem Repeats, the examination of studies where ancestries are documented may help us to better understand the role that genetic distance plays and be able to better understand relationship prediction.


Canada, R.A. (2011). If two men share a surname, how should the genetic distance at 37 Y-Chromosome STR markers be interpreted? Family Tree DNA.